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Abstract 

MEMS IMUs are a popular choice in navigation applications such as quadcopter drones, vehicle 

control and automation due to their low cost, size and power requirements. Attaining accurate 

estimations from MEMS IMUs is a well-known challenge due to gyroscopic drift, accumulation of 

errors and non-linear scale factors. A sensor fusion solution is proposed using LSTM and GRU 

recurrent neural networks to estimate quaternion-based AHRS orientation of a low-cost 9-axis MEMS 

IMU. This paper compares sensor fusion approaches by Madgwick and Mahony to the LSTM and 

GRU neural networks. Input data is collected using MPU-9255 MEMS IMU mounted to a custom 

three axis turntable designed to output accurate true attitude of the IMU. The results show RMSE 

reduction in error by 12% (GRU) and 39% (LSTM) over the Madgwick algorithm, 80% (GRU) and 

83% (LSTM) improvement over the Mahony algorithm. Additionally, LSTM and GRU predictions 

exhibit a quick response time to changes in attitude albeit the output requires filtering due to random 

fluctuations. It is concluded that the LSTM and GRU are a viable alternative to conventional sensor 

fusion algorithms.   
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Introduction 

Background 

The development of the first gyrocompass in 1908 by Schuler for the purpose of ship navigation 

demonstrated the value of inertial navigation and an alternative to the inaccuracies of compass and 

star navigation at the time. Later, evolution of aircraft in military service stressed the advancement of 

inertial navigation technologies during encounters with poor visibility, weather and a requirement for 

quick decision making and reduced pilot workload led to the development of the first automatic pilot 

using a gyroscope by Elmer A Sperry (Iurato, 2015). The first inertial measurement units (IMUs) 

were utilised for guiding rockets during the World War II German V2 program which consisted of a 

simplistic gyroscope and lateral accelerometer with mechanical connections to stabilise flight 

(Wrigley, 1977). Development of inertial navigation systems (INS) began in the MIT Instrumentation 

Laboratory (to become Charles Stark Draper Laboratory) where the first navigation system was built 

for the US Air Force aboard a B-29 bomber aircraft (King, 1998). Further improvements to the system 

led to advanced precision and miniaturised IMUs for the purpose of INS and missile guidance in the 

late 1960s.  

The invention of silicon semiconductors provided new techniques of fabricating micro-

electromechanical systems (MEMS) leading to mass manufacturing of low-cost IMUs which are 

widely used in devices ranging from smartphones, unmanned aerial vehicle (UAV) navigation and 

robotics (Norhafizan Ahmad, 2013). IMUs are used to estimate orientation of a body in space without 

external measurements such as a radar or GPS. Unfortunately, MEMS type of IMUs are sensitive to 

vibrations and prone to noise which causes estimations of orientation to drift from the actual value 

(Jaw-Kuen Shiau, 2012). Normally, some sort of processing algorithm is implemented to filter out the 

noise and combine sensor reading for a more accurate estimate. A well-established method of 

processing sensor data is a Kalman filter which was developed for the Apollo program to estimate 

trajectories of manned spacecraft on their way to the Moon (Grewal & Andrews, 2010). Despite wide 

use in navigation, Kalman filters suffer from several drawbacks that many iterations presented over 

the years attempted to correct (P. & M., 1999), including alternate filtering methods specifically 

designed for MEMS IMUs. Recent successes and advancement of machine learning in data analysis 

tasks provides an opportunity to explore a machine learning approach to sensor fusion of MEMS IMU 

sensor data (Alpaydin, 2020). Virtual personal assistance, speech recognition and synthesis, image 

processing and classification dynamic pricing, prediction of weather and traffic have progressed 

tremendously as a result of novel machine learning methods to solve these problems. This research 

project’s intent is to devise a machine learning solution to low cost MEMS IMU sensor fusion and 

compare the result to contemporary algorithms to assess effectiveness. 

Motivation 

With the rise in popularity and demand of self-driving vehicles, virtual reality, smartphone sat-nav 

and quadcopter drones in recent years, improvements to INS using MEMS Inertial Measurement 

Units is an important area of research in consideration of reliability and accuracy of these systems. 

Amazon’s ongoing development of autonomous drone delivery (Jung & Kim, 2017) will require 

accurate MEMS IMUs in inertial navigation when GPS data is unavailable or erroneous. Other types 

of IMUs such as Ring Laser Gyroscopes are too large, heavy and expensive to be installed in every 

single drone and are typically reserved for commercial aircraft. Growth of smartphone sales has 

produced a demand for integrated satellite navigation services such as Google’s Maps in lieu of 

dedicated satellite navigation devices (He Li, 2010). Global Positioning System (GPS) modules used 

in smartphones have limitations due to cost and size that require use of MEMS IMUs for adequate 

position and orientation; the standard data refresh rate for GPS modules is 1 HZ with high end 

modules (Sparkfun NEO-M9N) up to 25Hz rate as opposed to MEMS IMUs refresh rates of over 

1000Hz such as the popular Invensense MPU6050. GPS often reports false position when the number 

of detected satellites is low in dense urban areas, during this period of time the sat-nav relies on the 
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IMU to estimate position and orientation thus it is crucial that the estimate is as accurate as possible 

(Aboelmagd Noureldin, 2008). 

Machine learning has been applied extensively in the field of navigation especially in the 

development of self-driving cars. Neural networks (are a type of machine learning method) are well-

suited for these tasks because of their abilities to approximate arbitrary functions, learn and generalise 

from data as well as recognise patterns (Zou, et al., 2006). Image classification problems such as 

identifying a traffic light from an image is a difficult task to program algorithmically, alternatively a 

neural network can be trained on images of traffic lights and optimised to generalise on different 

types. Neural networks have been previously used to compensate for MEMS gyroscope drift due to 

temperature (Chong, et al., 2016) resulting in reduced errors compared to traditional methods. 

Furthermore, experiments in dead-reckoning using a Kalman filter assisted by deep neural networks 

have proven effective at reducing positional errors with exceptional performance during GPS outages 

(Brossard, et al., 2020 ). Sensor fusion of MEMS IMUs have been conventionally performed by 

fusion algorithms, but machine learning solutions have not yet been thoroughly researched. Further 

examination of machine learning sensor fusion of MEMS IMUs is implemented in this project and 

compared to current algorithms.  

 

  

Aims and Objectives 

The purpose of this paper is to explore machine learning solutions to sensor fusion of low cost MEMS 

IMU devices and compare their effectiveness to sensor fusion algorithms. Key indicators in assessing 

success criteria will be a reduction in error and improved estimation accuracy compared with sensor 

fusion algorithms. 

Project objectives: 

1. Review relevant scientific literature in the area of MEMS IMU sensor fusion and use of 

neural networks in aiding this task. 

2. Prepare a data collection method for the purpose of training and testing neural networks and 

implement suitable sensor fusion algorithms for comparison. 

3. Compile suitable neural network models and train on collected data. 

4. Calculate relevant metrics and graphs for the neural networks and sensor fusion algorithms. 

5. Analyse and discuss results of neural networks in comparison to sensor fusion algorithms.   
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Preliminaries 

Micro-electromechanical system (MEMS) is an umbrella term for miniature mechanical and electro-

mechanical elements typically in the range of a few micrometres to millimetres in size. These micro 

devices have the ability to actuate, sense, control and convert mechanical energy into electrical signals 

(Judy, 2001). Their small form factor, low cost and high manufacturing volume makes them 

widespread in commercial and industrial products with applications ranging from lifesaving blood 

pressure sensors to fibre optic switches in networking and communications, break force and fuel 

sensors in the automotive sector (Takeda, 2001) (Barbic, 2002). In the context of Inertial 

Measurement Units (IMU) this paper is primarily concerned with the sensor branch of MEMS. 

Inertial measurement unit (IMU) is a self-contained electronic device that measures force and angular 

rate using accelerometers and gyroscopes (Nawrat, et al., 2012). Some IMUs are paired with a 

magnetometer capable of measuring orientation with respect to the surrounding magnetic field of the 

body. An IMU typically contains three accelerometers perpendicular to each other to measure 

acceleration of a body in three axes (denoted x, y, z). Accelerometers detect all forces acting on the 

body including both static forces such as gravity and dynamic forces such as movement of the body or 

vibrations. Orientation is estimated by measuring the gravity vector of acceleration if the device is 

static and assumes no other forces are acting on the body (Mizell, 2003). IMUs also contains three 

gyroscopes that measure angular velocity which is integrated with respect to time to estimate 

orientation given a previous or known initial configuration. A gyroscope and the accelerometer are 

combined inside of an IMU because drawbacks of each sensor counteract and using an appropriate 

method, a more accurate orientation can be extracted (Soo, 2003); the gyroscope is less prone to short 

term noise but drifts in the long term while the accelerometer is unreliable in the short term. A 

sufficiently accurate gyroscope can detect the rotation of the Earth at about 15 degrees per hour 

(depending on the latitude) meanwhile high accuracy ring laser gyroscopes can even detect annual 

and Chandler wobble of the Earth’s axis (Beverini, et al., 2015). Magnetometers (sometimes called 

magnetic sensors) are devices capable of measuring magnetic field intensity (Lenz & Edelstein, 

2006). Magnetometers can measure the magnetic field intensity in three axes and therefore produce a 

field vector. Although magnetometers have many diverse uses such as magnetic surveys for mineral 

exploration (Budker, et al., 2013), in AHRS estimation magnetometers ideally only sense the Earth’s 

magnetic field direction as any other magnetic sources increase distortions and errors. 

Inertial Navigation Systems (INS) consist of IMUs to produce an estimate of the attitude, heading and 

position of the system given a known initial position (Kong, 2004). An IMU outputs raw data from its 

onboard sensors to the INS where some processing ensues to fuse data from accelerometers, 

gyroscopes and magnetometers to extract the orientation of a device. An attitude and heading 

reference system (AHRS) is a common output reference system used in aircraft navigation (Gebre-

Egziabher, et al., 2002). An AHRS is usually represented by the pitch, roll and yaw of a system with 

respect to the Earth reference frame. The process of combining data from multiple sources is called 

sensor fusion and is performed by a suitable algorithm, for example a Kalman Filter is widely used in 

this task (Qi & Moore, 2002).  
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Literature Review 

This section discusses literature in the field of MEMS IMUs and neural networks. Subsections are 

dedicated to individual topics. 

Kalman Filter 

Kalman filter (KF) is an iterative algorithm published by Rudolph Kalman in 1960 that provides 

estimates of variables given measurements collected over time (Kalman, 1960) using a form of 

feedback control. Kalman filters see use in a wide range of processes due to their generality and 

flexibility, most famously in the navigation of the Apollo Project (Grewal & Andrews, 2010). KF 

works by assuming measurement noise follows zero-mean Gaussian distribution which is an effective 

tool for estimation of linear systems, however most real world problems are nonlinear including IMU 

attitude estimation (Gui, et al., 2015). A common solution to this is a variant of KF called Extended 

Kalman filter (EKF) which linearises the state of measurement equations (Hellmers, et al., 2013) 

using Taylor series expansion, but other drawbacks arise as careful parameter tuning is required and 

computation requirements are considerably increased. 

Nonlinear Complementary Filter 

A paper titled Nonlinear Complementary Filters on the Special Orthogonal Group by Robert Mahony 

published in 2008 aimed to provide reliable attitude estimation of low cost IMUs (Mahony, et al., 

2008). In the paper, Mahony proposes a nonlinear filter termed explicit complementary filter which 

exhibits low sensitivity to noise. The filter uses a proportional and integral controller to correct 

gyroscope bias using accelerometer and magnetometer measurements in a closed feedback loop. The 

filter has two tweakable parameters for the controller and returns a system’s attitude expressed as a 

unit quaternion. The authors recommend use of quaternions for hardware implementations due to 

computational efficiency. Equations and derivations are listed in the cited paper and an 

implementation of the algorithm in C++ programming language by (Winer, 2018) can be found in the 

appendix.  

Madgwick Fusion Algorithm 

A popular sensor fusion algorithm optimised for embedded systems and widely used in quadcopters, 

was published by Sebastian Madgwick (Madgwick, 2010). The filter is based on an optimized 

gradient-descent algorithm which computes attitude as a quaternion to improve computation 

efficiency. Compensation of gyroscope bias is corrected by the accelerometer and magnetometer 

although the paper discusses that in most applications these sensors report erroneous data and thus the 

filter provides beta and zeta gains to tune divergence rate and response time. The author recommends 

that the parameters are tweaked to find optimal values for individual system and suggests a 

dynamically tuned parameters for systems that experience quick variations. Paper presents a reduced 

error and improved accuracy with exceptional performance at low sample rates (10Hz) over a classic 

Kalman filter without the burden of high computational load.  

Comparison of Sensor Fusion Techniques 

An article intended to study performance of three sensor fusion algorithms using a KUKA robot with 

a mounted ST L3GD20 MEMS 9-dof IMU (Cavallo, et al., 2014). The paper tested an Extended 

Kalman Filter (EKF), Madgwick and Mahony’s nonlinear filter solutions on static, slow moving and 

fast moving datasets with reference to robot’s platform angles given by digital encoders. The results 

indicate EKF fusion algorithm had the lowest Root Mean Squared Error (RMSE) with Madgwick 
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following second and Mahony filter last, but at the expense of an increased computation time (on an 

embedded system) of 2.7ms for EKF versus 0.15ms and 0.11ms for Madgwick and Mahony filter 

respectively. According to the result, this is an order of magnitude higher for only marginal 

performance improvement. However, a limitation of the study is the rather small dataset, as the 

samples were collected for one minute at a rate of 500Hz. Additionally, the range of tested maneuvers 

were limited by the slow moving robot arm with the fastest trajectory rotating at an angular velocity 

of 45 degs-1.  

Researchers in 2018 analysed EKF, Madgwick and Mahony sensor fusion algorithms performance 

using quadcopter flight data in an indoor environment (Ludwig & Burnham, 2018). The ground truth 

Euler angles of the quadcopter were collected using a Vicon motion capture system while IMU sensor 

data was fed to the fusion algorithms. The Mean Absolute Error (MAE) metric indicates similar 

performance for each algorithm with largest difference of 1.0 MAE (sum of x, y, z) but EKF scored 

greatest in the pitch and roll although worst in yaw estimation. In this implementation, EKF had the 

longest execution time of 0.2895s versus 0.2080s and 0.1782s for Madgwick and Mahony filters 

respectively, which agrees with the results of paper (Cavallo, et al., 2014). The research was limited 

by a lacking dataset which contained 6,400 samples and the ranges of motion for pitch and roll were 

under ±20deg and ± 200deg for yaw. This is a similar lack of diversity in the data alike to the 

previously work by Cavallo et al. in 2014. Graph plots of filter estimations show a reasonable amount 

of lag behind the ground truth Euler angles (a value for the lag was not given) particularly in the yaw 

axis which could be an indication of filter parameters tuned for smoothness over response time. The 

authors conclude that error measurements were similar for three sensor fusion algorithms, with 

Mahony outperforming the others in the RMSE norm metric and also the fastest code execution time.  

Mahony filter and Kalman filter were compared in human motion analysis by attaching seven IMUs 

to ten male subjects (Kim, et al., 2015). Using optical markers and 12 Hawk digital cameras, the 

researchers were able to compare orientations of body segments with IMU estimations from Mahony 

filter and KF. Root mean square difference (RMSD) was calculated for four different stances for 

seven IMU sensors attached to the body. Both the KF and Mahony filter estimated joint angles 

consistently when compared to the optical system. RMSD presented in tables shows almost identical 

results for the sensor fusion filters with Mahony marginally outperforming the KF, in one example the 

mean RMSD for walking was 2.0 and 2.1 for Mahony and KF respectively. The paper concludes that 

the Mahony filter can be used for human joint kinematic analysis and notes its fast execution speed 

which confirms the results of prior research.  

Brief Introduction to Machine Learning  

Most machine learning problems can be grouped into two categories, classification and regression 

(Ayodele, 2010). The former’s goal is to predict discrete values, for instance detecting if an image 

contains a car or not would be a binary classification problem. Regression problems concern 

prediction of continuous values such as temperature of a particular place at some point in the future. 

Types of machine learning algorithms are separated into four groups: supervised, unsupervised, semi-

supervised and reinforcement learning. Supervised learning can be thought of as function 

approximation where features X attached to labels Y are used for training of the algorithm to best fit 

the data (Reed & Marks, 2014). Neural networks and support vector machines (SVM) are examples of 

supervised learning algorithms (Tao, et al., 2006). Unsupervised learning is used when the data 

doesn’t contain or cannot have labels such that the algorithm attempts to detect patterns and 

categorize data. IMU sensor fusion is a time series regression problem as data is collected from 

sensors at some sample rate and using an external method, labels can be collected for the data. 

Therefore, the type of machine learning algorithms appropriate to perform MEMS IMU sensor fusion 

task is supervised multivariate time series forecasting.  
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MEMS IMUs and Machine Learning  

In 2018, researchers developed a recurrent neural network model to reduce gyroscope noise of a MT 

MSI3200 MEMS IMU (Jiang, et al., 2018). The IMU was placed on a table and samples were 

collected at 400Hz for 10 minutes. The network model employed a variant of recurrent neural network 

(RNN) called Simple Recurrent Unit (SRU); this type of recurrent neural network has fewer 

parameters to optimise training time compared to LSTM RNNs and GRU RNNs. Training was 

performed for 100 epochs with a learning rate of 0.01 and batch size of 128. The results for gyroscope 

noise were compared with raw gyroscope readings as well as attitude estimation algorithm prior and 

after network model denoising. The x, y and z axes noise were reduced by 0.6%, 60.5% and 11.3% 

respectively. For roll, pitch and yaw estimations, the neural network reduced errors by 19.2%, 82.1% 

and 69.4% respectively. Unfortunately, the MEMS IMU was static for the entire duration of data 

collection, the IMU did not include accelerometer/magnetometer sensors and an AHRS algorithm was 

required to compute Euler angles. Furthermore, despite promising results the dataset was collected for 

a short period of time of 10 minutes, even though the collection method permitted a much longer 

sampling time (static placement on a table). Authors recommend further experimentation with 

different types of RNNs and propose a feasibility study in GPS/INS integration during 60 second GPS 

signal dropouts. 

Another approach of denoising MEMS IMUs using supervised learning algorithms was analysed and 

compared by authors of journal article (Gonzaleza & Catania, 2019). The setup involved four MEMS 

IMUs (gyroscope and accelerometer) mounted to a vehicle driven around a car park in figure eight 

and loops several times. Ground truth was established using GNSS and a non-MEMS Honeywell 

H764G-1 high accuracy navigation-grade IMU. Three denoising techniques carried out include 

moving-average, multi-layer perceptron (MLP) and time-delayed multiple linear regression (TD-

MLR). Models were validated on a separate trajectory denoted S2 which closely resembled real world 

movement of a road vehicle as opposed to S1 training trajectory. Data was evaluated using RMSE 

which demonstrated an improvement in noise reduction of MLP and TD-MLR models over moving 

average and raw data consistently. The study was extensive with 20 minutes of data sampled at 250Hz 

using four separate models of IMUs and included motion in contrast with previous research. The data 

was a good representation of the real world and combined several sensors and ground truth methods. 

The paper builds a strong case for use of neural networks in MEMS IMUs however a comparison to 

conventional methods was not included as moving average is rarely used without other filters. 

Therefore it is difficult to interpret the result and effectiveness of neural networks against 

conventional methods such as an Extended Kalman filter. 

Authors of another paper explored a novel (Liu, et al., 2018) UAV attitude estimation method using a 

long-short term memory (LSTM) neural network. The UAV was a quadcopter drone containing a 

9dof MEMS IMU onboard a PIXHAWK flight controller. Data was sampled at 100Hz for 80 seconds 

during quadcopter flight and 10% of the data was used as validation of the network model. The input 

data for the LSTM model was the IMU sensor (contained within the flight controller) meanwhile 

labels were collected by a modified complementary filter which calculated pitch, roll and yaw at the 

end of a run. Unfortunately the researchers did not use an external system to measure ground truth 

attitude of the quadcopter. The limitation of this approach is that the LSTM model tries to best 

approximate the complementary filter instead of true quadcopter angles. Researchers state that careful 

parameters were picked to maximize accuracy and that the LSTM model replaces complex attitude 

calculations of the complementary filter. Using only 1 hidden layer with 15 cells, the model achieved 

mean squared error (MSE) of 0.000855, 0.005985 and 0.003255 for pitch, roll and yaw estimations. 

Graph plots of the predicted angles show fluctuations rather than a smooth curve yet the trend mirrors 

the calculated angles accurately. Although this is an optimistic result, further research should acquire 

more sample data with a better system of labelling reliable ground truth. The data in this report was 

collected while the quadcopter hovered for 80 seconds but lacked any challenging real world 

maneuvers which if applied could confuse the LSTM model during linear accelerations, 

magnetometer noise and extreme attitude angles.  
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Further work used LSTM neural networks with good results for calibration and bias prediction of 

MEMS IMU MUG2213M accelerometer and gyroscope (Wang, et al., 2019). The IMU was attached 

to a three axis turntable which allowed collection of data with reliable labels from the turntable’s 

angular rate given by digital encoders. The authors justify the choice of the neural network due to 

LSTM’s effectiveness in identifying time series data. The LSTM layer consisted of 32 cells, 16 linear 

cells and 3 cells for the output layer. The turntable rotated on all three axes in a sinusoidal manner of 

fixed frequency and amplitude. Results displayed by a graph show a significant reduction in noise and 

bias of the IMU closely following the real curve. The authors conclude that the LSTM model can 

achieve high precision calibration of the IMU and its non-linear factors while being insusceptible to 

time-correlated noise. However, this paper doesn’t test other IMU sensors in the calibration. The 

paper fails to address the possibility of the LSTM network adapting to predictable sinusoidal motion 

rather than movements of real world devices such as the land vehicle research project in previously 

discussed paper (Gonzaleza & Catania, 2019). Additionally, the authors do not state how much data 

was collected and only show a sample of 8 seconds with a maximum angular rate of 60degs-1. 

Research into sensor fusion using artificial neural networks (ANN) was conducted (Kolanowski, et 

al., 2013) where training data was generated using quadcopter flight data, a setup similar to the paper 

(Liu, et al., 2018). An AHRS algorithm generated output labels pitch, roll and yaw using 9dof MEMS 

IMU sensor data. About 30 seconds of data was collected to train the neural network and the authors 

conclude that a larger data set is required for improved approximations. Unlike research of sensor 

fusion using LSTMs by Liu et al., graph plots of the output in this work are smooth and closely 

resemble the AHRS algorithm without random fluctuations encountered previously. Comparing the 

accelerometer, gyroscope and magnetometer inputs of these papers shows a distinct difference in 

noise and variations of the input data. Further work by researchers of (Kolanowski, et al., 2018) 

article used an Elman ANN (a type of RNN) with quadcopter flight data sampled at a rate of 50Hz. 

Training labels were created using EKF estimation for the dataset. A graph plot displays 3000ms of 

attitude Euler angles ranging from -100 to 100 degrees with quickly changing movements. 

Unfortunately, error metrics were not provided in this paper, however a graph plot of errors was 

shown which indicates large uncertainty during quick maneuvers. The output attitude also 

encountered fluctuations like other research papers which the authors attributed to high dynamics of 

the input data. The dataset size is lacking and authors acknowledge that more data is required in future 

research. The conclusion states that Elman ANN sensor fusion can be used as an alternative to EKF as 

it is less computationally expensive and does not require complex operations.  

 

Summary of Findings 

From prior work of other researchers, it is apparent that the popular choice is a Kalman filter due to its 

flexibility and low error estimations, even though many researchers note the drawback of 

implementation complexity and expensive computation (Gui, et al., 2015). Mahony’s complementary 

filter algorithm provides an alternative to the Kalman filter for embedded hardware implementations 

without compromising accuracy. Madgwick’s filter demonstrates good results as another alternative 

which sees popular use in quadcopters due to its fast convergence and quick parameter tuning.  

Researchers employ recurrent neural networks in MEMS IMUs due to their ability to recall previous 

states in their output which is important in time-series problems as gyroscopes report angular velocity 

which requires time integral to calculate orientation. Prior work focuses on labelling training data 

using other sensor fusion algorithms, however this has several limitations because a neural network 

approximates the algorithms that also exhibit errors with respect to the actual AHRS. This is seen in 

the paper (Kolanowski, et al., 2013) where graph plots of attitude between ANN and AHRS show that 

neural network underestimates the output at extreme attitudes. Prior work reveals several methods of 

collecting data to produce a dataset for training neural networks. Methods that use a vehicle or a 

quadcopter drone to require expensive equipment to track ground truth data using optical tracking or 

ring laser gyroscopes. Alternatively, a three axis turntable can be used to reproduce any type of 
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motion without the use of external equipment for ground truth data labels (which are provided from 

the turntable’s internal circuitry).  
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Methodology and Implementation 

The aim of this research project is to compare sensor fusion using neural networks to current methods 

of sensor fusion. This section describes the methods used to solve the problem.  

Introduction 

A three-axis turntable for data collection is expensive therefore a modified solution is presented in this 

paper. A custom built turntable is produced using stepper motors and 3D printing technology to 

assemble the final design. Tracking rotations of three stepper motors is used to establish ground truth 

attitude of the turntable. Stepper motors do not contain a sensor to keep track of their position like 

servo motors but provide precise control over movement and can rotate fully in any direction (servo 

motors are restricted to a range of angles) (Acarnley, 2002). The solution to record stepper motor 

positions is done by counting the number of steps a motor takes from its known initial position. 

The MEMS IMU chosen for this project is 9dof (9 degree-of-freedom) MPU-9255 containing an 

accelerometer, gyroscope and magnetometer (InvenSense Inc., 2014). The MPU-9255 is a popular 

choice among enthusiast quadcopter pilots due to its versatile configuration of sensors: accelerometer 

axis range from ±16G(G is the acceleration due to gravity of value 9.81ms-2) to high precision mode 

±2G, gyroscope maximum range ±2000 degs-1 to high precision ±250degs-1. The MPU-9255 requires 

an I2C bus compatible device to retrieve data therefore a STM32F103C8 microcontroller 

(STMicroelectronics, 2015) is used for its fast 72MHz processor clock and 128KB memory. 

Moreover, due to the popularity of this model there are a wide range of resources, availability and 

documentation to ease development.  

The neural networks selected for sensor fusion are the LSTM and GRU RNNs as prior research 

recommended their use in MEMS IMU processing and many results supported this advice. The 

implementation of the LSTM and GRU is done in the Tensorflow library using Keras high level API 

for python programming language. Keras and Tensorflow provide a wide range of tools for neural 

network training such as regularisation, variety of optimisers, metrics, model checkpoint saving and 

tensorboard tracking. The neural network solution is compared to Mahony and Madgwick sensor 

fusion algorithms. Research from literature review compares these algorithms to established methods 

like Extended Kalman filter and conclude that Mahony and Madgwick implementations provide 

similar results while being computationally efficient.  

Theoretical Context 

Recurrent Neural Networks (RNN) 

Recurrent neural networks are characterised by their ability to remember previous states of the 

network (Mandic & Chambers, 2001 ) in contrast with traditional feedforward neural networks such 

as a multi-layer perceptron (MLP). The limitation of a classic perceptron neuron is that if a sequence 

of information is inputted into the network, the neuron will process the data at each time step 

individually without influence of prior states. RNNs overcome this limitation by allowing past 

information to be weighted in the output of a neuron’s current state. This can be thought of as a 

process where the state at each time step is added to the current state in a cycle. A diagram in Figure 1 

illustrates unrolling of a single RNN neuron into a layer of RNNs at various time steps. 
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RNNs quickly rose in popularity due to their success in natural language processing and time series 

forecasting. However, a drawback of a standard RNNs is learning long-term time dependencies 

(Kostadinov, 2018), such as extracting context from a paragraph. This is difficult due to vanishing 

gradient problem which occurs during backpropagation where the derivative of the loss function (such 

as sigmoid) decays exponentially with time (Boden, 2001) (Bengio, et al., 1994). This causes states 

from sequences further in the past to have a decaying weight on the current state until eventually it 

becomes negligible.  

Long Short Term Memory (LSTM) 

A paper titled Long Short Term Memory presents an improved type of RNN with long-term 

dependencies specifically designed to circumvent the vanishing gradient problem (Hochreiter & 

Schmidhuber, 1997). The new LSTM cell encloses what the authors describe gate structure containing 

three gates: an input gate, forget gate and an output gate. These gates control the flow of information 

through the LSTM cell. A diagram of an LSTM cell is displayed in Figure 2. 

 

Figure 2- Illustration of an LSTM cell structure of three gates, hidden and cell states (O'Shea, et al., 2016). 

Figure 1: Diagram of RNN cell unrolled into t timesteps (Kelleher & Dobnik, 2017).  

Ct-1 Ct+1 

ht-1 ht+1 
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The forget gate, denoted ft, can be considered as its own layer inside of the neuron with a sigmoid 

activation function and inputs xt and ht-1, where xt is the input matrix to the cell and ht-1 is the hidden 

state at time step t-1 (the previous output of the cell).The forget gate has the ability to choose the 

information to keep. The forget gate is given by equation [1], 

 𝑓𝑡 =  𝜎(𝑊𝑓(ℎ𝑡−1, 𝑥𝑡)  +  𝑏𝑓) [1] 

where, 

Wf is weight of the forget gate, 

bf is the bias of the forget gate,   

σ is a sigmoid activation function. 

The input gate controls the information that is added to the current cell state. First layer of the input 

gate denoted it is a sigmoid activation function with its own weights and biases similarly to the forget 

gate. The next tanh layer is responsible for a new cell state, denoted C’t and is multiplied by the input 

gate which controls the amount of information passed from the previous state to the current cell state 

vector, Ct. The final result of the cell state is given by equation [2], 

 𝐶𝑡 =  𝑓𝑡 ∙ 𝐶𝑡−1  + 𝑖𝑡 ∙ 𝐶𝑡
′ [2] 

where, 

Ct-1 is the cell state at time step t-1, 

The output gate, ot , is composed of a sigmoid layer and a tanh layer. The output gate combines the 

prior gates to decide which parts of the cell state are passed on to the hidden state. The sigmoid layer 

is given by [3], 

 𝑜𝑡 =  𝜎(𝑊𝑜(ℎ𝑡−1, 𝑥𝑡)  +  𝑏𝑜) [3] 

where,  
Wo is weight of the gate, 

bo is the bias of the gate,   

σ is a sigmoid activation function. 

And the hidden state, ht is given by [4], 

 ℎ𝑡 =  𝑜𝑡 ∙ tanh (𝐶𝑡) [4] 

The weights and biases for each gate are updated individually during training. The gate structure of 

the LSTM solves the vanishing gradient problem as memory persists in the cell state.  

Gated Recurrent Unit (GRU) 

The GRU is one of many variants of the LSTM cell but with a simplified structure containing only 2 

gates (Britz, 2015). The first gate, called update gate, determines how much information from past 

time steps is kept using a sigmoid activation layer. The update gate can copy previous information 

using weight Uz as it is multiplied by the previous hidden state. The update gate is given by [5] 
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 𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡  +  𝑈𝑧ℎ𝑡−1) [5] 

where,  

σ is the sigmoid activation function. 

Wz is the weight of the update gate, 

Uz is the weight for hidden state of the previous time step, 

xt is input data, 

ht-1 is previous hidden state. 

 

The second gate, called reset gate, controls how much information is forgotten. Implementation is 

similar to the update gate and the proportion of the past state to the current input is controlled by 

weights [6], 

 𝑟𝑡 =   𝜎(𝑊𝑟𝑥𝑡  +  𝑈𝑟ℎ𝑡−1) [6] 

where,  

Wr is the weight of the reset gate, 

Ur is the weight for hidden state of the previous time step. 

 

The GRU removes the need for a cell state vector by using the hidden state to pass information. The 

hidden state can store relevant information by combining the output of the reset gate which itself 

controls previous time step data, see equation [7], 

 ℎ′𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1) [7] 

where,  

W is the output weight, 

U is weight assigned to previous hidden state, 

⨀ is Hadamard product. 

Lastly, the cell needs to determine how much information is transferred from the current state and the 

previous steps. The hidden state of the GRU, ht is given by equation [8] 

 ℎ𝑡 =  𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ′𝑡 [8] 

Consider a scenario where the update gate zt is close to 1, the leftmost term of [8] would converge to 

ht-1 which is the previously stored state. Meanwhile the rightmost term would converge to 0, due to (1- 

zt) and so the present state of h’t is ignored or forgotten. Thus the update gate controls how much 

information from the previous state is stored in the hidden state. This design of a recurrent neural 

network is capable of preventing the vanishing gradient problem while also being faster to train than 

the LSTM as a result of fewer parameters. A diagram of a GRU cell is shown in Figure 3.  
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Figure 3 – Structure of a Gated Recurrent Unit (Olah, 2015).  

Hardware Setup 

The MPU-9255 is a low-cost MEMS IMU designed by Invensense consisting of MPU-6500 

gyroscope with accelerometer and AK8963 magnetometer by AsahiKasei (AsahiKasei, 2013). For 

convenience, the MPU-9255 is surface-mounted on MPU-92/65 breakout board as illustrated in 

Figure 5 which provides accessible through-hole headers for soldering. The IMU communicates using 

I2C bus with an STM32F103C8 microcontroller provided on a popular breakout board called maple 

mini. The microcontroller has 37 high-speed GPIO pins and a USB interface for connecting to a 

desktop computer enabling information transfer (STMicroelectronics, 2015). 

 

Figure 4 – MPU-92/65 breakout board containing MPU-9255 MEMS IMU with decoupling capacitors. 

The MPU-95/65 breakout board is attached to a custom built three axis turntable. Each axis of the 

turntable is controlled by a 28BYJ-48 stepper motor model which is of the unipolar type powered by 5 

volts. The 28BYJ-48 motor (Kiatronics, 2013) has a gear reduction ratio of 1/64 and supports a 

rotation angle of 0.176 (3 significant figures) degrees per step in full step mode. Occasionally, the 

gear ratio differs from the manufacturer’s datasheet therefore the gear ratio is tested by spinning the 

motor for 10 full rotations and deviation is measured from the initial mark using a protractor; the 

value found is 1/63.7 and this is corrected in software. During the test, it was discovered that the shaft 

has a small amount of looseness where the motors have no holding torque for 2 degrees (measured 

using a protractor). This could not be corrected as the play is due to the internal mechanism of stepper 

motors. The turntable mounting solution was designed in AutoCAD Fusion360 and fabricated using a 

3D printer in PETG plastic to house the 28BYJ-48 and the MPU-92/65 IMU board. Since the 

construction is plastic, some level of bending is expected but there were no visible or measurable 

adverse effects. 

The STM32F103C8 controls each stepper motor (and therefore axis of the turntable) separately using 

4 GPIO pins (12 in total) connected to ULN2003A Darlington arrays. The stepper motors are not 

wired directly to the microcontroller as this would damage the internal circuitry. Power is supplied 
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using a 12V to 5V buck converter which is directed to the stepper motors and ULN2003A arrays. 

Two separate sources of power are supplied to the motors and MPU-9255 in order to reduce noise and 

damage on sensors contained within the MEMS IMU. This is supplied from the 5V USB and reduced 

to 3.3V using maple mini’s onboard regulator. The hardware setup is labelled in Figure 5. 

Figure 5 – Setup of the data collection equipment.  

Software 

Microcontroller Implementation 

A program loop written in C++ programming language runs on the STM32F103C8 microcontroller 

that handles data retrieval from the MPU-9255 IMU, controls turntable movements and communicates 

with the desktop via USB Serial port. The MPU-9255 configuration is initialised through the I2C bus 

and begins collecting data immediately at a sample rate of 250Hz. The MPU-9255 is configured for 

maximum range of ±8G acceleration and ±500degs-1 and data is converted according to the datasheet 

provided by the manufacturer (STMicroelectronics, 2015). The magnetometer data includes all 

magnetic sources surrounding the IMU and since the IMU is positioned near magnetic fields of three 

stepper motors, the magnetometer requires careful calibration to compensate for biases (soft iron and 

hard iron distortions). Hard iron distortions are caused by constant, fixed magnetic sources that rotate 

with the magnetometer (Konvalin, 2009 ). Soft iron sources cause a skewed distortion that changes 

depending on the orientation of the magnetometer. To compensate for soft iron and hard iron sources, 

a magnetometer calibration routine is written into the program and performed at start-up by rotating 

the sensor in all possible directions. The final magnetometer data output is compensated for scales and 

biases including built-in factory calibration values to maximise accuracy of the data.  

ULN2003A arrays 

Buck Converter 5V 
STM32F103C8 

Maple Mini 

Three-axis 

Turntable 

MPU-92/65 

board 

12V Power 

Supply 

USB – Desktop 

Connection 
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Figure 6 – Implementation of sensor fusion on the STM32F103C8 microcontroller. 

The Mahony and Madgwick sensor fusion algorithms are implemented in C++ and run on the 

microcontroller in real time, Figure 6. The algorithms are updated at the same rate as data is being 

retrieved from the IMU at a rate of 250Hz. The output is stored as a quaternion using 32 byte floating 

point data type. The sensor fusion algorithms are carefully tuned by comparing response time and 

difference to the true angles (established by the turntable) to ensure optimal performance.  

Since the turntable has an x, y and z axis, the attitude is naturally a Euler angle representation. The 

Euler angles are calculated by tracking the position of each motor’s step count and converting the 

steps into degrees using a value calculated from the gear ratio and angle per step. The turntable is 

calibrated using physical markers and aligned with the magnetic North with the help of software and 

onboard MEMS IMU to home each axis to zero, according with the AHRS. The output label data is 

converted from Euler angles to a quaternion representation of AHRS using [9][10][11][12] .  
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where,  

p is the pitch Euler angle, rotation around the x-axis, 

r is the roll Euler angle, rotation around the y-axis, 

y is the yaw Euler angle, rotation around the z-axis, 

q0 is the w component of a quaternion, 

q1 is the x component of a quaternion, 

q2 is the y component of a quaternion,  

q3 is the z component of a quaternion, 
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Quaternion representation is a four-component complex number in the range of -1 to 1 used for 

describing orientation of an object with respect to a reference system. Quaternions are used in 

software applications over Euler angles due to several advantages such as faster code execution speed 

(Gavilan, 2016). Mahony and Madgwick sensor fusion algorithms compute AHRS as a unit 

quaternion therefore it was considered appropriate to keep the output label data in the form of a 

quaternion. In addition, a quaternion does not need further normalising to scale labels for the purpose 

of training neural networks. 

The 28BYJ-48 motors have physical limitations that should not be exceeded for proper function of the 

turntable. Stepper motors can randomly skip steps during operation at maximum stress and this leads 

to inaccurate position. To ensure that these limitations are not exceeded, the x and y stepper motors 

are constrained to a maximum safe acceleration of 35.3degs-2 and maximum angular velocity of 

176.6degs-1 meanwhile the z axis is limited to 7.06degs-2 and 35.2degs-1 due to heavier load on this 

motor. Skipped steps were not encountered during use and this was ensured at the end of data 

collection by homing motors to the initial position and measuring deviation from physical markers. 

Improving on prior research methods the turntable is rotated in pseudo-random fashion, generated by 

a Perlin noise function that produces smooth transitions between random numbers allowing for 

gradual varying acceleration and position. Prior work used periodic functions such as a sinusoidal 

(Wang, et al., 2019) which is predictable and unrepresentative of motion of most real-world 

applications (such as a quadcopter).  

Due to the design resembling a gimbal, an event termed gimbal lock occurs when one of the axes 

advances to ±90deg, or parallel to the other axes (Hanson, 2006). At this stage, the axis at parallel 

with another axis no longer has unique control of the reference frame axis and one degree of freedom 

is lost. This is corrected once the locked axis returns to a prior state under ±90deg. In theoretical 

applications quaternions can be used to avert gimbal lock such as in 3D software, however in the real-

world gimbal lock occurs because a rotation around an axis is not arbitrary but rather constrained to 

the physical location of a motor. Engineers in the Apollo program encountered this problem and 

suggested a fourth axis to correct gimbal lock when a degree of freedom was lost (Hoag, 1963). This 

solution could not be installed in this design of the turntable therefore rotations of the turntable were 

constrained to prevent the occurrence of gimbal lock. The maximum angle for x and y axes is limited 

to ±90deg in software.  

Python Data Collection Script 

A python 3 script running on an Intel i7 desktop enables communication with the microcontroller to 

store the MEMS IMU data. When a serial port connection is established the script transmits 

commands that home turntable axes to their initial position (zero for each axis). Data is transmitted to 

the python script running on the desktop at a sample rate of 250Hz, to match filter and MPU-9255 

sample rates. Data is received as individual frames in hexadecimal format separated by a line ending 

delimiter and then unpacked into 32 byte floating point type. The received data frame contains 9 axis 

IMU data, elapsed time in microseconds, 4 sensor fusion quaternions and 4 ground truth quaternions. 

The script checks for frame length to detect if data is corrupted and in case that it is, the corrupted 

frame is discarded. Data is collected for one million frames which lasts 67 minutes and then stored in 

a csv file. Two datasets are stored for training, one containing the Mahony sensor fusion filter 

quaternion data referred to as the Mahony dataset and another containing the Madgwick sensor fusion 

data referred to as the Madgwick dataset hereinafter. Limitation of microcontroller hardware 

prevented both Mahony and Madgwick sensor fusion algorithms running at the same time as the 

computation time was too long to maintain 250Hz rates as data began corrupting frequently near USB 

Serial port bandwidth.  

Neural Network Training 

Tensorflow is a free open-source machine learning library for python used in this project along with 

Keras high level API. Datasets collected from the python 3 script are loaded using Pandas python 
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library and processed before training. The Mahony/Madgwick filter columns are excluded from the 

dataset as they are not needed for training. 

Pre-processing Datasets 

Firstly, the time elapsed column (in microseconds) is transformed into a delta (difference) of times by 

subtracting each row from the previous row and then scaled linearly to range of 0 to 1. Relative time 

(time between IMU data samples) is passed to the neural network as relative time is needed to 

estimate orientation using a gyroscope (integrating angular velocity). The Mahony and Madgwick 

sensor fusion algorithms require relative time therefore for an equal comparison it was decided 

appropriate to input the same information to the neural networks.  

Each sensor of the MEMS IMU has a different unit of different scale and range which can increase 

difficulty in training neural networks. For this reason, a pre-processing module by Scikit-Learn is 

imported to apply a standard scaler method on the input data. The standard scaler function applies the 

operation given by equation [13] for each sample n to output the result zn, 

 𝑧𝑛 =
(𝑥𝑛 − 𝑢)

𝑠
 [13] 

where, 

xn is input data point, 
u is mean of training data, 
s is the standard deviation of training data. 

Pre-processing data is important because activation functions such as the sigmoid converge to 0 for 

large negative inputs and 1 for positive inputs (Bruha, 1999). The characteristics of data points further 

from the origin are less emphasised than data points nearer to the origin because there is a greater rate 

of change of the activation function (not the case for a rectified linear unit). This leads to reduced 

accuracy and increased training time of neural networks.  

 

 

Figure 7 – Plot of w-component of the ground truth quaternion and a rolling mean curve. 
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Stepper motors are controlled in discrete steps which means the quaternion label data is also discrete 

as shown by a plot of the output quaternion in Figure 7. However, in reality the motor has momentum 

that maintains movement during step transitions in contrast to discrete steps. For this reason, the 

output data is smoothed using a moving average with a period of 5 samples. LSTM and GRU network 

accuracy reflected positively after this change.  

Recurrent neural networks are passed sequences (sometimes referred to as time steps) of data to 

predict the next target in the sequence thus the dataset is split into equal sequences of 30 frames. The 

sequence length is not chosen arbitrarily, a longer sequence improves accuracy of the model at the 

expense of higher computation cost and memory. A sequence length of 30 is chosen in consideration 

of computing performance of embedded hardware and portable devices. The sequences are shuffled 

randomly to reduce the chance of the neural network memorising the dataset and overfitting. 

Overfitting is a term to describe a situation where a neural network optimises solely to the training 

data such that when tested on new, unseen data (validation data) the model underperforms 

(Srivastava, et al., 2014). To measure how well the neural network model is performing on unseen 

data (and whether the neural network is overfitting), the dataset is split into 80% training set and 20% 

validation set.  

Neural Network Model 

Two recurrent neural network models are implemented, the LSTM RNN and GRU RNN. The 

difference between the final models is the type of neuron used in the hidden layers. A smaller sample 

of a dataset is taken containing 50,000 data frames for the purpose of tuning model parameters. 

Testing different parameters and configurations on a smaller sample reduces time spent waiting for 

training to complete. The parameters changed were learning rate, batch size, number of layers, 

sequence length, loss function, optimisers and hidden layer neuron type, then compared using mean 

absolute error (MAE) and mean squared error (MSE) metrics.  

The final model has the following structure: 10 inputs, 2 hidden layers and a final output layer of 4 

neurons corresponding to 4 quaternion outputs. The final RNN and LSTM models differ only in the 

hidden layer neuron type. During training, dropout layers are added after hidden layers 1 and 2 to 

reduce overfitting which works by randomly setting input elements to zero to force neurons to learn 

independently rather than rely on other neurons. The inputs are: 3 accelerometer axes, 3 gyroscope 

axes, 3 magnetometer axes and delta time; these are the same inputs that Mahony and Madgwick 

algorithms receive. A training run consists of 100 epochs of batch size 500.  

 

Figure 8- Training model of the GRU neural network. 

 

 

Figure 9 – Training model of the LSTM neural network. 

The final model selected for training contains 30 cells for the hidden layers each with a RNN neuron 

with an additional dropout layer of value 0.1, Nadam optimizer with MAE loss function, learning rate 

of 10-3 and batch size of 500. The sequence length of 30 was selected for its quick computation and 

good prediction trade-off. The model diagram is displayed in Figure 8 and Figure 9 for the GRU and 

LSTM respectively. 
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Analysis methods 

Data analysis is performed on validation data because training data is not usually representative of 

how a neural network will perform on new, unseen data. The validation set of 200,000 samples is 

passed through the neural network and predictions are stored in an array. Performance of the neural 

network model is assessed by several metrics calculated against the ground truth data provided by the 

turntable in quaternion representation. Data analysis performed on Mahony and Madgwick sensor 

fusion algorithms is also compared against the ground truth. The metrics used for measuring error and 

accuracy are described in this section. 

Mean squared error (MSE) is a measure of how far data lies from the actual values by taking the 

square of errors and averaging over the entire set, given by [14]. MSE is often used in loss functions 

of neural networks because the model converges quickly when errors are large and is easily 

differentiable for backpropagation (Kawaguchi, 2000).  

 𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑛 − 𝑦′𝑛)2

𝑁

𝑛=0

 [14] 

where, 

yn is the estimated value, 

y’n is the true value, 

N is the sample size. 

 

A model that fits the actual data perfectly will have zero MSE as there are no errors (Mishra, 2019). 

Root mean squared error (RMSE) is preferred in measuring errors over MSE because it has the 

advantage of being in the same base unit as the data which makes it easier to interpret the result. 

RMSE is a quadratic score rule and is given by taking the square root of MSE, equation [15]. 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 [15] 

MSE and RMSE range from 0 to infinity and are negatively-oriented (the lower the better). 

Unfortunately, both MSE and RMSE suffer from the same drawback that large errors of a few outliers 

are emphasised more than the rest of the data (due to squaring of errors) and not how well the rest of 

the data fits with observations. For this reason, other metrics are used in conjunction with RMSE to 

improve knowledge about the model’s performance. 

Mean absolute error (MAE) represents the average magnitude of errors between predictions and 

actual observations. Similarly to RMSE, MAE is negatively-oriented and ranges from 0 to infinity but 

the key difference is that less weight is given to outliers and MAE values increase with variance of 

errors while RMSE can remain relatively fixed (variance expresses how far values are from the 

mean). MAE is a linear score which means that differences between observations are weighted 

equally in average. MAE is given by equation [16]. 
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where, 

yn is the estimated value, 

y’n is the true value, 

N is the sample size. 

The coefficient of determination, R2 indicates how much of the variation in data is due to input values. 

Values of R2 can express the percentage of data points passing through the observations which can 

indicate the goodness of fit. R2 is positively-orientated in the range of 0 to 1, with 1 indicating that all 

variations in data are explained by the input (Swalin, 2018). Sometimes negative values of R2 are 

calculated which means that predicted values are not correlated with observations. Equation for the 

coefficient of determination is given by equation [17] 

 𝑅2 = 1 − 
∑ (𝑦𝑛 − 𝑦′𝑛)2𝑁

𝑛

∑ (𝑦𝑛 − �̅�𝑛)2𝑁
𝑛

 [17] 

where,  

yn is the estimated value, 

y’n is the true value, 

�̅�𝑛 is the mean of true values, 

N is the sample size. 

There are limitations of R2 that should be considered when using the metric, R2 can increase when 

new variables are added to the model without detecting this change. Additionally, R2 can increase 

with an increased number of data points which can seem that the model is improving when it is not 

(Swalin, 2018). Also, even when R2 shows a strong correlation between variables it does not prove 

causality. This is addressed by using adjusted R2 which is given by equation [18] 

 𝑅𝑎𝑑𝑗
2 =  

(1 − 𝑅2)(1 − 𝑁)

𝑁 − 𝑘 − 1
 [18] 

where,  

k is the number of independent variables, 

N is the sample size. 
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Results and Discussion 

Parameter Tuning 

Prior to training of the final neural network models, the dataset is reduced to a sample count of 50,000 

and tested with various configurations and parameters. The results for an RNN hidden layer model are 

shown in Figure 10 with four different parameters tested.  

First, the baseline model contains two GRU layers (denoted rnn) of 30 neurons each, applying MSE 

as the loss function and sequence length of 30 time steps. The first model had an MSE of 1.83x10-4 

and MAE of 0.0101. The next test had the loss function changed to MAE which resulted in improved 

reduction of errors as the best model over 100 epochs converged to MSE of 1.56x10-4 and MAE of 

0.00903. In this particular implementation, results demonstrate that MAE reduces errors in fewer 

epochs than MSE and for further runs MAE was selected as the loss function, this configuration is 

selected as the baseline. One key note of interest was to check if using a GRU layer and a layer of 

densely connected neurons (perceptron) improved performance of the model as researchers of paper 

(Gonzaleza & Catania, 2019) used MLP neural networks with good results. Unfortunately, both MSE 

and MAE showed a substantially reduced performance with the perceptron layer(denoted d) and thus 

future runs replaced the perceptron with the same type GRU in hidden layer 2. The greatest effect on 

MSE and MAE reduction is seen when the number of neurons in hidden layers was increased to 60 

(brings the total to 120) and a neuron count of 10 increased errors by the largest amount with MSE of 

1.30x10-3 and MAE of 0.0262. Finally, reducing sequence length to 10 time steps caused a slim 

increase in errors and doubling sequence length to 60 had little change, as MAE improved by only 3% 

and MSE by 8% over the baseline.  

In conclusion, the greatest improvement was achieved by increasing the neuron count in hidden layers 

and increasing sequence length, however this comes at a cost of model complexity and higher 

computational cost. With consideration of embedded hardware and battery powered devices, the 

number of neurons in hidden layers was selected to 30 and sequence length of 30 as a good trade-off 

between accuracy and complexity. The loss function selected was MAE as it offered the best 

convergence and two LSTM/GRU hidden layers.  
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Figure 10 – A plot of MSE and MAE comparing differences in parameters after 100 epochs of training.  
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Pre-processing Data  

Pre-processing data played a crucial role in training neural networks as the raw input data had varying 

scales and ranges. Figure 11 shows an example of raw sensor data from the MPU-9255. In this 

snapshot, the accelerometer values vary about 20 ms-2 but the magnetometer values vary a staggering 

2,400microT.  

 

Additionally, there is a substantial amount of noise on both the accelerometer and gyroscope plots 

which was probably due to the mechanical vibrations of stepper motors, each moving at different 

velocities. The magnetometer data has an exceptional amount of noise, the most out of all sensors, 

particularly on the y axis (indicated by the green line). It is suspected that the source is the y axis 

stepper motor as its placement is the closest to the MPU-9255 mounting position, as seen in Figure 5. 

The noise appears to vary in amplitude and frequency as it is being condensed in some areas and 

expanded in others, this corresponds with the changes in acceleration of the y-axis motor.  

 

Figure 11- Plot of raw input data (using a sample of 5000 at random) from the MPU-9255. 

Figure 12- Input data after pre-processing function.  
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Figure 12 shows a random sample of input dataset after the pre-processing function was applied. The 

inputs are now scaled on each axes and centred around origin. Additionally, the amount of clutter on 

the graphs is reduced versus the raw sensor information data from Figure 11. Features of the dataset 

remain recognisable and original characteristics were preserved. Pre-processing data had the effect of 

improving training accuracy and reducing the time it took to converge to a solution.  

Training Neural Networks 

The graph in Figure 14 shows validation and training accuracy over 100 epochs of the LSTM neural 

network. After the first epoch, training accuracy is at 85.0% and validation  accuracy at 88.3% and 

eventually begins converging to an accuracy of 92.7% and 93.4% on the last epoch for training and 

validation respectively.  

 

 

Figure 14 – LSTM neural network training history over 100 epochs on the Madgwick dataset.  
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Figure 13 – GRU neural network training history over 100 epochs on the 

Madgwick dataset.  
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Upon inspection, it may seem counter-intuitive that validation accuracy is greater than training 

accuracy, after all the model has never seen validation data. However, the dropout layers and other 

types of regularisation are turned off during validation which means that the neural network 

encounters fewer erroneous datapoints. In the opposite scenario, where training accuracy is greater 

than validation accuracy and the curves diverged would be indication of overfitting. This graph does 

not contain such features and instead the accuracy converges. Figure 13 shows mean squared error of 

training and validation of a GRU model on the Madgwick dataset. Again, the validation error is lower 

than training error and there is no indication that the model is overfitting. Instead, it appears that the 

model has not yet converged, and further training epochs are needed to minimise error.  

Figure 15 and Figure 16 display the validation MSE of the LSTM and GRU neural networks on the 

Mahony dataset. The LSTM model displays a slightly decreased error over the GRU model which 

suggests that the LSTM is outperforming the GRU on the Mahony dataset. The LSTM is 

outperforming the GRU by a narrow margin when trained on the Madgwick dataset. Further epochs 

are needed to verify whether the LSTM is better suited over the GRU. Despite this, the LSTM 

converged sooner and to a lower error value under both datasets.  

 

Figure 15- LSTM neural network training history over 100 epochs on the Mahony dataset. 
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Figure 16- GRU neural network training history over 100 epochs on the Mahony dataset. 
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Analysis of Results 

This subsection compares and discusses the results of recurrent neural networks versus Mahony and 

Madgwick sensor fusion algorithms. Metrics from the methodology section are presented in tables 

and model predictions are plotted against sensor fusion algorithm estimates. Pre-processing of the 

output quaternion was disabled during metric calculation. 

 

Metric 

Madgwick dataset 

Madgwick Sensor 

Fusion GRU LSTM 

MSE 0.0192 0.0150 0.00711 

RMSE 0.139 0.122 0.0843 

MAE 0.103 0.0824 0.0567 

R2
adj 0.231 0.304 0.694 

Table 2 – Results of the error metrics on the Madgwick dataset (3 significant figures). 

Table 1 and Table 2 display errors and metrics calculated for the Mahony and Madgwick dataset in 

comparison with the GRU and LSTM neural networks. In Table 1, the neural networks scored 

substantially better in RMSE versus the Mahony algorithm with a percentage improvement of 82% 

and 84% for the GRU and LSTM respectively. The MAE was reduced by 80% and 83% by the GRU 

and LSTM. The Mahony dataset scored a particularly low score of RMSE 0.626 with regards to a 

quaternion representation. The errors are considerably large and would most likely lead to unreliable 

predictions. Moreover, the difference between RMSE and MAE is positive and the largest out of the 

other models which indicates that outliers present in the predictions contributed to large errors. The 

RMSE scored 0.626 while MAE scored 0.386, a difference of 62%. Furthermore, the adjusted R2 

value for the Mahony suggests a weak fit and quaternion estimates may not correlate with the true 

turntable quaternion, reasons for this are examined using graphical plots. The GRU and LSTM score 

an R2
adj value of 0.55 and 0.66, which suggests that over half the data points fall on the true attitude 

line. While this is not ideal, it is certainly an improvement over the Mahony algorithm.  

Table 2, shows a good performance by the Madgwick sensor fusion algorithm with RMSE and MAE 

of 0.139 and 0.103 respectively. The neural networks outperformed the Madgwick in RMSE as the 

GRU scored 0.122 and LSTM scored 0.0843, an improvement of 12% and 39% respectively. The 

three methods provide similar performance and adequate AHRS estimation; the RMSE values 

correspond to an expected mean quaternion error of about 7% for Madgwick, 6% for Mahony and 4% 

for the LSTM model. Again, the difference between RMSE - MAE indicates a presence of outliers in 

the data that increased overall errors and reduced goodness of fit. The adjusted R2
adj  is only 0.23 for 

the Madgwick sensor fusion algorithm despite similar RMSE and MAE values to GRU and LSTM. 

The LSTM and GRU outperformed Madgwick in the R2
adj score with a value of 0.69 and 0.30 for the 

GRU.  

Metric 

Mahony dataset 

Mahony Sensor Fusion GRU LSTM 

MSE 0.392 0.0129 0.00954 

RMSE 0.626 0.114 0.0977 

MAE 0.386 0.0776 0.0656 

R2
adj 0.0429 0.553 0.664 

Table 1 – Results of the error metrics on the Mahony dataset (3 significant figures). 
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Although the Madgwick and neural networks perform similarly in terms of errors, the LSTM neural 

network solution consistently beats the other methods in every metric and dataset.  

Four graphs were plotted containing four quaternion components to investigate estimations by 

algorithmic sensor fusion against predictions of the neural networks. The graphs were plotted using a 

random sample of 10,000 frames from the validation dataset. Every graph contains the neural network 

prediction (indicated by red line), the sensor fusion algorithm estimation (blue), ground truth (green) 

and a final smoothed out curve using a moving average of 100 steps (black). Smoothing was added to 

visualise the average trend of the neural network predictions due to fluctuations and noise.  

 

Figure 17 – Quaternion AHRS plot of Mahony vs GRU sensor fusion.  

Figure 18 - Quaternion AHRS plot of Mahony vs LSTM sensor fusion. 
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Figure 17 shows a Mahony filter versus GRU plot of quaternion estimates. Upon reviewing the 

graphical plots, it appears that the Mahony sensor fusion algorithm occasionally diverged from the 

ground truth curve in various places, for instance at the 4,000-5,000 sample count range where it can 

be seen that the Mahony curve deviates and then gradually returns to the true quaternion values. These 

erroneous estimations in the data clarify the reason for large error RMSE values and weak fit 

indicated by R2
adj. The explanation for these deviations is likely magnetic disturbances of the stepper 

motors which the Mahony filter relied on, despite the unreliable magnetic sensor readings. It seems 

the Mahony filter performs poorly with low quality input data. The GRU sensor fusion model 

performed best in predicting the x and y quaternions however, likely due to the same reason the 

Mahony filter struggled, quaternion z and w components veer off from ground truth and contain 

significantly more noise than x and y components.  

Figure 19 - Quaternion AHRS plot of Madgwick vs LSTM sensor fusion. 

Figure 20- Quaternion AHRS plot of Madgwick vs GRU sensor fusion. 
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The GRU and LSTM estimations contain a lot of noise in general but when smoothed using a moving 

average (window of 100 samples) to remove most of the fluctuations, the trend of the curve trails the 

true quaternion. The plots have a striking resemblance to the paper (Liu, et al., 2018) in which the 

output Euler angles also encounter random noise. There are places where the GRU estimations deviate 

from the actual but eventually correct to the true quaternion line in a similar fashion to the Mahony 

although less prominently.  

A plot of LSTM versus Mahony can be seen in Figure 18 which demonstrates similar behaviour 

encountered by the GRU. Even though the LSTM scored better error values all around, there is still a 

significant amount of noise and uncertainty particularly on the w and z quaternion components. In 

addition, further confirmation of the Mahony filter struggling at some places such as 0 to 2,000 where 

every subplot shows a deviation of the estimate from the ground truth. The difference between neural 

networks and the Mahony filter is visible the most when compared to the x and y components where 

neural networks manage to salvage noisy sensor information and output an attitude that if filtered, 

could still be used. In a scenario where a quadcopter drone encounters a lot of magnetic disturbances 

due to motor noise, the GRU and LSTM could estimate pitch and roll from the quaternion x and y 

components enough for the drone to stabilise albeit following a magnetic North would prove to be 

difficult.  

Investigating the Madgwick versus GRU plot in Figure 20 illustrates a significant improvement over 

the Mahony filter. The Madgwick fusion algorithm performs a good estimation of true quaternions 

including the w and z components where the Mahony filter encountered difficulty. Outliers are still 

present in certain areas such as in the range of 4,500-5,000 of the w and z components but are shortly 

corrected. The GRU fails to estimate the w and z components as shown by excessive noise and 

random walk. On the other hand, the LSTM model (Figure 19) manages to predict the w and z 

components with a decent fit, which agrees with the result of the R2
adj metric. The LSTM and 

Madgwick perform similarly in estimating the w and z components with the occasional outliers, 

however the Madgwick does so with much less turbulence. The weak R2
adj score for the Madgwick 

could be due to lagging of the true quaternion. This can be seen best in the x and y components, the 

Madgwick filter is lagging the true value by about 50-100 samples while the filtered GRU and LSTM 

curves respond sooner.  

The plots indicate a generally good fit by the neural networks in x and y components with arguably 

better performance than the Madgwick. The result is reversed when comparing w and x quaternions as 

the Madgwick demonstrates a fantastic resistance to noise with occasional deviations that are 

corrected promptly. The LSTM learned to overcome the distortions and noise in w and z components 

over long term, albeit fluctuations in the output persist and would require filtering in a real world 

application. Further work should aim to reduce and discover the source of these errors. 

 

Sources and Discussion of Errors  

Systematic Errors 

The primary source of errors in this project was the magnetometer data. The graph plots of the input 

data show large varying magnetic disturbances in the x axis and y axis. The source of these 

disturbances is attributed to the turntable’s stepper motors which produce strong magnetic fields when 

rotating. The position of the MEMS IMU mount was too close to the internal magnets and coils of the 

stepper motors due to the design of mounts holding everything together. During magnetic calibration 

routine, soft iron and hard iron biases were compensated for but not dynamic changes caused by the 

motors. The turntable mounts were fabricated in 3D printed PETG material which is durable but 

relatively flexible compared to PLA and ABS therefore the size of the turntable was limited. The 

accelerometer and gyroscope sensors showed vibrations and fluctuations in the inputs which further 

increased noise and errors. The source of vibrations is likely the stepper motors because when the 

turntable was not moving, the variation in input data was reduced. This suggests that this particular 
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model of stepper motors is not ideal for the turntable and in future improvements another motor 

should be used for the design. During turntable design, it was noted that each stepper motor has 2 

degrees of looseness where the motor has no holding torque. This means that when a stepper motor 

changed directions there may have been a discrepancy between actual position and measured position 

of the shaft. 

Random Errors 

Random types of error are unavoidable and unpredictable. Although power supplied to the motors and 

MEMS IMU was kept separate to reduce electrical noise, there are always small variations in the 

voltage of linear regulators and buck converters. For example, temperature changes and electrical load 

will affect the voltage supplied to the MEMS IMU. MEMS IMUs are also affected by temperature 

changes which can affect sensor readings such as the gyroscope (El-Diasty, et al., 2007). This project 

did not measure or control temperature therefore it is unknown how much temperature changes 

affected the final result.  

Stepper motors are known to skip steps when stressed to their maximum working conditions. Skipped 

steps are random and can happen when the motor is forced to move faster than the manufacturer 

recommends. Skipped steps are difficult to measure but if they occur frequently then there is a 

difference between the motor home position and initial position. To ensure that this did not happen, 

the turntable was constrained to maximum speeds and accelerations and at the end of each run tested 

if the home position deviated from the initial markers.  

Measurement Errors 

Several measurements were taken to ensure proper operation of the turntable. The gear ratio was 

calculated by using a protractor to measure the difference between initial position and ten full 

rotations. The gear ratio was adjusted in software, however because the measurement was taken using 

a protractor with degree increments, the measurement error is ±1.0 degree. Moreover, the physical 

markers for calibrating initial position were measured using a straight edge of a ruler. This method of 

measurement is imperfect as some measurement errors originate due to parallax and the ruler. Time 

was measured for the calculation of AHRS using sensor fusion algorithms and neural networks, but 

time was measured using a microcontroller that relies on a quartz crystal for time keeping. The 

microcontroller’s ability to maintain accurate time is not perfect and measurement precision was 

limited to ±1microsecond, therefore some variation is expected. 

Summary 

The quaternion estimation plots indicate a similar performance for the LSTM and GRU in the x and y 

components although both neural networks exhibit a large amount of noise. This noise can be filtered 

using a simple moving average which demonstrates that the average of noisy values is on track with 

the true AHRS. This data noise could be due to the large amount of vibrations and disturbances of the 

magnetometer data that the neural networks were trained on. Each neural network processes a time 

step length of only 30 frames while moving average filtered 100 data points therefore it may be 

difficult to output a smooth result by observing short sequences. Nevertheless, further work is 

required to determine the true cause of the fluctuating output.  

Noise in the magnetometer data proved a significant challenge for all tested methods to estimate the 

yaw direction as can be seen by noise and drift on the quaternion outputs of w and z plots. 

Determining the x and y components contained less errors likely because there is accurate data from 

the gyroscope and accelerometer that can be combined for estimation of pitch and roll. One 

interesting characteristic of the LSTM and GRU plots is the quick response to changes in attitude and 

heading where the Mahony and Madgwick algorithms lagged ground truth. The LSTM and the 

Madgwick algorithms performed better in the w and z components despite noise and disturbances that 
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the other methods found challenging. These results suggest that the LSTM model and Madgwick 

algorithm are less susceptible to noisy environments than the Mahony algorithm and the GRU model.  
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Conclusion 

 

Further work  

Data Collection 

The turntable design should be revised by extending the length of the brackets and mounts such that 

the MEMS IMU placement is far enough from stepper motors that the magnetic field disturbances are 

negligible. The design could incorporate higher quality motors capable of faster rotations and 

smoother movement as well as an extra axis for four degrees of freedom to solve the gimbal lock 

problem. Initial position calibrations can be performed using a more accurate method such as using an 

LED and receiver diode. These changes could extensively test a wider range of movements such as 

full spins on various axes. Alternatively, a high quality commercially available turntable could be 

used to mount one or more MEMS IMU models at the same time. Different types of MEMS IMUs 

will have varying drifts therefore testing how well the neural network adapts to these biases will be 

important for deployment on various devices. Testing edge cases, such as free fall and extreme 

angular velocities is critical in applications of quadcopter drones where drastic movements are 

common. A temperature sensor could be included in the MEMS IMU such that compensation of drift 

and biases due to temperature is included in the neural network. These improvements will enhance the 

quality and diversity of data which will be crucial for training reliable neural networks for sensor 

fusion of MEMS IMUs.  

Neural Network Models 

This research project trained two recurrent neural networks of two hidden layers however other neural 

network types such as convolutional neural networks could be tested and compared. Further work 

should test the effect of changing the number of hidden layers on the errors and accuracy of the final 

model. Investigate the cause of noise in the output quaternion data and examine methods to reduce 

fluctuations in the output of the LSTM and GRU models. Further exploration of neural networks in 

AHRS estimation could be combined with a GPS module to provide enhanced INS position estimates, 

particularly when a GPS signal is lost or spurious.  

Conclusion 

The purpose of this research project was to implement and compare machine learning solutions to 

sensor fusion algorithms of MEMS IMU AHRS estimation. The data was collected using a three-axis 

turntable in order to rotate the MEMS IMU in various orientations, speeds and accelerations for long 

periods of time. Over 2 hours of data was collected at a sampling rate of 250Hz using a low cost 

MPU-9255 sensor. Two recurrent neural networks (LSTM and GRU) were tested against two popular 

sensor fusion algorithms (Mahony and Madgwick). Although the input data was noisy and affected by 

magnetic distortions, both the sensor fusion algorithms and neural networks were capable of 

estimating attitude with the LSTM outperforming other methods in MSE, RMSE, MAE and R2
adj 

metrics. The graph plots of output quaternion data support these results however the Madgwick and 

Mahony sensor fusion algorithms had significantly fewer fluctuations compared to the GRU and 

LSTM. From the graphical comparison of LSTMs and GRUs there was a discernible difference of 

convergence time to true quaternion over the Madgwick and Mahony algorithms. The results indicate 

that recurrent neural networks are capable of sensor fusion but may require help from filtering tools to 

smooth out the data for use in real world applications. Further research should experiment with 

optimising the neural networks in order to reduce fluctuations and noise in the output data as well as 

improve performance in the estimation of w and z components of a quaternion representation of 

AHRS.
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Appendix B – Sensor Fusion Implementation 

Mahony and Madgwick algorithm implementations by Kris Winer (Winer, 2018) in C++ for Arduino.  

void SensorFusion::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, 

float gz, float mx, float my, float mz, float deltat) 

{ 

    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for 

readability 

    float norm; 

    float hx, hy, _2bx, _2bz; 

    float s1, s2, s3, s4; 

    float qDot1, qDot2, qDot3, qDot4; 

 

    // Auxiliary variables to avoid repeated arithmetic 

    float _2q1mx; 

    float _2q1my; 

    float _2q1mz; 

    float _2q2mx; 

    float _4bx; 

    float _4bz; 

    float _2q1 = 2.0f * q1; 

    float _2q2 = 2.0f * q2; 

    float _2q3 = 2.0f * q3; 

    float _2q4 = 2.0f * q4; 

    float _2q1q3 = 2.0f * q1 * q3; 

    float _2q3q4 = 2.0f * q3 * q4; 

    float q1q1 = q1 * q1; 

    float q1q2 = q1 * q2; 

    float q1q3 = q1 * q3; 

    float q1q4 = q1 * q4; 

    float q2q2 = q2 * q2; 

    float q2q3 = q2 * q3; 

    float q2q4 = q2 * q4; 

    float q3q3 = q3 * q3; 

    float q3q4 = q3 * q4; 

    float q4q4 = q4 * q4; 

 

    // Normalise accelerometer measurement 

    norm = sqrtf(ax * ax + ay * ay + az * az); 

    if (norm == 0.0f) return; // handle NaN 

    norm = 1.0f / norm; 

    ax *= norm; 

    ay *= norm; 

    az *= norm; 

 

    // Normalise magnetometer measurement 

    norm = sqrtf(mx * mx + my * my + mz * mz); 

    if (norm == 0.0f) return; // handle NaN 

    norm = 1.0f / norm; 

    mx *= norm; 

    my *= norm; 

    mz *= norm; 

 

    // Reference direction of Earth's magnetic field 

    _2q1mx = 2.0f * q1 * mx; 

    _2q1my = 2.0f * q1 * my; 

    _2q1mz = 2.0f * q1 * mz; 

    _2q2mx = 2.0f * q2 * mx; 

    hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - 

mx * q3q3 - mx * q4q4; 

    hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * 

mz * q4 - my * q4q4; 

    _2bx = sqrtf(hx * hx + hy * hy); 

    _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - 

mz * q3q3 + mz * q4q4; 

    _4bx = 2.0f * _2bx; 

    _4bz = 2.0f * _2bz; 

 

    // Gradient decent algorithm corrective step 

    s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 

* (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx 

* (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * 

(0.5f - q2q2 - q3q3) - mz); 
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    s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * 

(1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * 

(q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - 

my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); 

    s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 

* (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - 

q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * 

(q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - 

q3q3) - mz); 

    s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 

+ _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz 

* q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) 

+ _2bz * (0.5f - q2q2 - q3q3) - mz); 

    norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude 

    norm = 1.0f / norm; 

    s1 *= norm; 

    s2 *= norm; 

    s3 *= norm; 

    s4 *= norm; 

 

    // Compute rate of change of quaternion 

    qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; 

    qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; 

    qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; 

    qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; 

 

    // Integrate to yield quaternion 

    q1 += qDot1 * deltat; 

    q2 += qDot2 * deltat; 

    q3 += qDot3 * deltat; 

    q4 += qDot4 * deltat; 

    norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion 

    norm = 1.0f / norm; 

    q[0] = q1 * norm; 

    q[1] = q2 * norm; 

    q[2] = q3 * norm; 

    q[3] = q4 * norm; 

 

} 

 

 

 

void SensorFusion::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, 

float gz, float mx, float my, float mz, float deltat) 

{ 

    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for 

readability 

    float norm; 

    float hx, hy, bx, bz; 

    float vx, vy, vz, wx, wy, wz; 

    float ex, ey, ez; 

    float pa, pb, pc; 

 

    // Auxiliary variables to avoid repeated arithmetic 

    float q1q1 = q1 * q1; 

    float q1q2 = q1 * q2; 

    float q1q3 = q1 * q3; 

    float q1q4 = q1 * q4; 

    float q2q2 = q2 * q2; 

    float q2q3 = q2 * q3; 

    float q2q4 = q2 * q4; 

    float q3q3 = q3 * q3; 

    float q3q4 = q3 * q4; 

    float q4q4 = q4 * q4; 

 

    // Normalise accelerometer measurement 

    norm = sqrtf(ax * ax + ay * ay + az * az); 

    if (norm == 0.0f) return; // handle NaN 

    norm = 1.0f / norm;        // use reciprocal for division 

    ax *= norm; 

    ay *= norm; 

    az *= norm; 

 

    // Normalise magnetometer measurement 

    norm = sqrtf(mx * mx + my * my + mz * mz); 

    if (norm == 0.0f) return; // handle NaN 

    norm = 1.0f / norm;        // use reciprocal for division 
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    mx *= norm; 

    my *= norm; 

    mz *= norm; 

 

    // Reference direction of Earth's magnetic field 

    hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + 

q1q3); 

    hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - 

q1q2); 

    bx = sqrtf((hx * hx) + (hy * hy)); 

    bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - 

q3q3); 

 

    // Estimated direction of gravity and magnetic field 

    vx = 2.0f * (q2q4 - q1q3); 

    vy = 2.0f * (q1q2 + q3q4); 

    vz = q1q1 - q2q2 - q3q3 + q4q4; 

    wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); 

    wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); 

    wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); 

 

    // Error is cross product between estimated direction and measured direction of gravity 

    ex = (ay * vz - az * vy) + (my * wz - mz * wy); 

    ey = (az * vx - ax * vz) + (mz * wx - mx * wz); 

    ez = (ax * vy - ay * vx) + (mx * wy - my * wx); 

    if (Ki > 0.0f) 

    { 

        eInt[0] += ex;      // accumulate integral error 

        eInt[1] += ey; 

        eInt[2] += ez; 

    } 

    else 

    { 

        eInt[0] = 0.0f;     // prevent integral wind up 

        eInt[1] = 0.0f; 

        eInt[2] = 0.0f; 

    } 

 

    // Apply feedback terms 

    gx = gx + Kp * ex + Ki * eInt[0]; 

    gy = gy + Kp * ey + Ki * eInt[1]; 

    gz = gz + Kp * ez + Ki * eInt[2]; 

 

    // Integrate rate of change of quaternion 

    pa = q2; 

    pb = q3; 

    pc = q4; 

    q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); 

    q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); 

    q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); 

    q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); 

 

    // Normalise quaternion 

    norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); 

    norm = 1.0f / norm; 

    q[0] = q1 * norm; 

    q[1] = q2 * norm; 

    q[2] = q3 * norm; 

    q[3] = q4 * norm; 

 

} 

 


